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In  three-dimensional BBnard convection regions of rising and sinking fluid are 
dissimilar. This geometrical effect is studied for axisymmetric convection in a 
Boussinesq fluid contained in a cylindrical cell with free boundaries. Near the 
critical Rayleigh number R, the solution is obtained from a perturbation expan- 
sion, valid only if both the Reynolds number and the PBclet number are small. 
For values of the Nusselt number N < 2 accurate solutions are provided by an 
expansion in a finite number of vertical modes. For Prandtl numbers p < 1 the 
form of the solution changes at  large Reynolds number and becomes independent 
of p ;  in the limit p +  0 there is an effective critical Rayleigh number R* = 1*32Rc, 
which can also be derived by a perturbation procedure, and the Nusselt number 
is a function of the Rayleigh number only. Numerical experiments yield solutions 
for Rayleigh numbers R < 100R, and p 2 0.01. The results are similar to those 
for two-dimensional rolls and for R 2 5Rc the Nusselt number shows only a weak 
dependence on p .  For p > 1 there is a viscous regime with N M 2(R/Rc)i; when 
R/R, 2 pb, N increases more rapidly, approximately as R0.4. At high Rayleigh 
numbers a large isothermal region develops, in which the ratio of vorticity to 
distance from the axis is nearly constant. 

1. Introduction 
Astrophysical convection can be investigated by isolating individual features 

and studying them in numerical experiments. Although it is convenient to solve 
two-dimensional problems, stellar convection is intrinsically three-dimensional. 
The solar granulation, for example, shows an irregular pattern of roughly 
polygonal cells, each with a broad central column of rising gas surrounded by 
tt narrow cold descendingregion. We can distinguish between geometrical features 
of the three-dimensional cells (such as the asymmetry between ascending and 
descending plumes) and fully three-dimensional dynamical behaviour. In  this 
paper we study only the geometrical properties of laminar, three-dimensional 
cellular convection, and exclude the range of unsteady behaviour that requires 
a full three-dimensional solution of the governing equations. 

It is generally thought that the heat flux across a convecting layer does not 
depend on the viscosity when the Prandtl number p is sufficiently small and 
hence that the Nusselt number N must depend on the product of p and the 
Rayleigh number R (Spiegell971 a, b) .  No such behaviour is shown by numerical 
experiments on convection in two-dimensional rolls between stress-free 
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boundaries, where N varies approximately as Ri and is independent of p when 
p < 1 (Moore & Weiss 1973). However, some model calculations using truncated 
equations with a fixed hexagonal planform have indicated that N - (pR)* when 
p < 1, pR % 1 (Gough, Spiegel & Toomre 1975). This result suggests that N 
should be strongly dependent on p in geometrically three-dimensional flows. 

Rayleigh (1916) noted that we may regard the hexagon “as deviating corn- 
paratively little from the circular form ”. Axially symmetric convection in a 
cylindrical cell provides the simplest geometrically three-dimensional configura- 
tion: if fluid rises around the central axis and sinks at the perimeter there is an 
asymmetry between upward- and downward-moving regions. We have therefore 
investigated axisymmetric Rayleigh-BBnard convection in a Boussinesq fluid 
confined between free boundaries. 

The only previous treatment of convection between free boundaries in an axi- 
symmetric cell is due to Liang, Vidal & Acrivos (1969), who used a perturbation 
expansion (Malkus & Veronis 1958) to obtain the solution near the critical 
Rayleigh number R, and also computed one model with R = 1*06R,. When 
p 6 0-1, their finite amplitude expansion gives 

N -  l ~ p ‘ ( R - R , ) .  (1) 

For this problem we can calculate both a PBclet number P e  and a Reynolds 
number Re, based on the maximum vertical velocity. The perturbation pro- 
cedure is valid only if Pe and Re are both small: we find that, for p > 1, the 
Nusselt number is accurately estimated if R 5 1.5Rc; but, for p < 1, 

Re NN 100(R/Rc- 1) 

and (1) is accurate to within 10% only for R 5 I-lR,. 
A full solution to this problem requires a nice combination of analytical and 

computational techniques. Small amplitude convection can conveniently be 
studied by expressing each variable as a truncated Fourier series in the vertical 
co-ordinate. Four modes are sufficiently accurate for N < 2. The solutions 
obtained for 6 p < 1 agree with the perturbation expansion provided 
Re 5 10. As the Reynolds number increases, advection of vorticity becomes 
important and the dependence of N on p in (1) disappears. For p < 1 the heat 
transfer is unaffected by convection until R is increased to a value R” NN 1.32RC 
and thereafter 

N - ICC R - R” 

and is independent of p .  Moreover, the value of R* can be obtained from a 
perturbation procedure valid when p < 1. 

This modal analysis provides a bridge between perturbation expansions and 
numerical experiments. We have computed results with 1.1 < R/Rc 6 100 for 
0.01 < p < 6-8 and also for infinite Prandtl number. At low Rayleigh numbers 
these confirm the behaviour described above. For R 2 5R, two regimes can be 
distinguished. In  the viscous regime, when R/R, 5 pf, advection of vorticity is 
negligible and 

( 2 )  

N z 2(R/R,)* (3) 
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and is independent of p. At high Reynolds numbers, when advection dominates 
diffusion of vorticity, we find that 

(though the exponent in this power law is not accurately determined). 
At high Rayleigh numbers the heat transport varies only slightly with the 

Prandtl number and as p 4 0 the Nusselt number becomes independent of p for 
all R > R": at R = lOOR,, for example, N decreases by 10 yo a s p  rises from 0.01 
to 00. Moreover, the change in N is confined to the range 0.1 5 p 5 (R/Rc)%. The 
most interesting kinematic variable is the potential vorticity s1 = W / T ,  where 
o is the vorticity and r the normalized distance from the axis, which is advected 
without change by the flow. Profiles of s1 show considerable variation with both 
R and p. As the Rayleigh number is increased, a large isothermal region develops 
in the cell and at  high Reynolds numbers s1 is constant in this toroidal region, as 
predicted by Batchelor (1956). 

Although this cylindrical model is geometrically three-dimensional, nonlinear 
solutions yield a heat flux that shows little dependence on the Prandtl number. 
In fact, though they exhibit rather more variety, these solutions are surprisingly 
similar to the two-dimensional rolls described by Moore & Weiss (1973). The con- 
straint of axisymmetry leads to steady solutions a t  low PrandtI numbers, in 
which the convecting fluid acts as a flywheel, gaining speed each time it traverses 
the layer until friction is eventually sufficient to maintain an equilibrium. We 
deduce therefore that any theory in which N is a function of the product pR 
cannot rely on steady laminar flow, and must require time-dependent dynamical 
behaviour. This can only be studied in a fully three-dimensional calculation. 

In $ 2  we first of all formulate the problem to be solved. Small amplitude 
solutions are described in $ 3. We then present the results of the numerical experi- 
ments in $4 and discuss their properties in $ 5. The finite-difference methods used 
are described in the appendix. Finally, we relate this model to other treatments 
of convection and speculate on the behaviour of turbulent convection. 

Although convection between free boundaries in an axisymmetric cell has only 
been studied by Liang et al. (1969), much more attention has been paid to rigid 
boundary conditions, which can be realized in the laboratory though they are 
probably less relevant to stars. Linear theory has been dealt with by Pellew & 
Southwell (1940), Charlson & Sani (1970, 1971) and Joseph (1971). Nonlinear 
results for R < 5000 were obtained by Liang et al. (1969) and compared with 
experiments in a cylindrical container, using an oil with a temperature-dependent 
viscosity, for R < 12 000. Recently Threlfall(l975) has carried out a much more 
extended series of experiments using gaseous helium at 2 OK at  Rayleigh numbers 
up to lo9. Koschmieder (1966, 1974) has published striking photographs of con- 
vection in a circular container, with a cylindrical cell surrounded by annular 
convection rolls; however Krishnamurti ( 1973) found that this pattern was 
eventually superseded by one with rolls that were everywhere perpendicular 
to  the boundary. 

AT cc RQ.4 (4) 
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2. Formulation of the problem 
We consider a Boussinesq fluid with a velocity u and a denaity p such that 

and 

where a is the coefficient of thermal expansion, T the temperature and po the 
density when T = To. Then the vorticity w = V A u satisfies the equation 

awlat = V A (U A 0) -aVT A g+ vV'W, (7) 

where 8 is the gravitational acceleration and v the kinematic viscosity. In  addi- 
tion, from the heat flow equation, 

a q a t  = - v ,  ( T U )  + K V ~ T ,  (8) 

where K is the thermal diffusivity. 
For axisymmetric convection we adopt cylindrical polar co-ordinates (r,  4, z )  

with the z axis vertical, and constrain the flow to be purely meridional and 
independent of the azimuth 9. Then 

(9) u = (u, 0, w), w = (0, w ,  0) 

and, from ( 5 ) ,  we can introduce a Stokes stream function (r such that 

where e+ is a unit vector in the 9 direction. It follows from (9) and (10) that 

and the vorticity equation (7) simplifies to 

aT ] a, [:(:: ] (12) 
a 

-= -  -(wu)+-((ow) -ga-+v - - - ( T W )  +- . 
at [: az 

The nonlinear term on the right of (12) describes the advection of vorticity. As 
a vortex tube is transported away from the axis it stretches and its cross-section 
correspondingly diminishes. In  the absence of viscosity the circulation round the 
tube remains constant (by Kelvin's theorem) and so wcc r. For convection a t  high 
Reynolds numbers in a layer of depth d it proves convenient to use, instead of w ,  
the quantity 

C? = w(d/r) ,  (13) 

which is the value the vorticity would have if a ring of fluid were transported to 
a standard distance d from the axis. IR is an intrinsic property of the vortex ring, 
and remains constant in the absence of a buoyancy torque or viscosity; by 
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analogy with meteorological usage we term s1 the potential vorticity. Then (1 1) 
is replaced by 

(14) 
and (12) becomes 

V .  [r-2V$] = - SL 

[,‘e I ga aT 
- V . ( Q u ) - - - + v V .  -V(r2!2) , as1 

at r ar 
-=  

which closely resembles the temperature equation (8). 
As a model of convection in a polygonal cell we consider the cylindrical region 

0 < r < r,,, 0 < z < d ,  within which (S), (15) and (14) must be solved, subject to 
appropriate boundary conditions. For simplicity we assume that the boundaries 
are free. On the horizontal planes z = 0,d both the normal velocity and the 
tangential stress vanish, while the temperature is fixed: hence 

(16) 1 $ =  0, w = 0, s1 = 0 (2 = O,d),  

T = To ( Z  = d ) ,  T = To+AT ( Z  = 0). 

On the cylindrical boundary the normal heat flux and velocity and the tangential 
stress all vanish, so that 

$ = 0, w = 0,  SL = 0,  aT/ar = 0 ( T  = ro). (17) 

At the axis, symmetry requires that 

t,h = 0, o = 0,  SL = awlar, aT/ar = 0 (r = 0). (18) 

Although the model could also describe a central cell surrounded by an arbitrary 
number of annular rolls, as in Koschmieder’s (1966, 1974) experiments, we shall 
be concerned only with a single convection cell occupying the region 0 < r < ro. 
The generalization from one cell to a pattern of closely packed cells cannot be 
realized by an axisymmetric system. 

A particular configuration is defined by three dimensionless parameters : the 
Rayleigh number 

R = gaATd3/~v, (19) 

the Prandtl number 
and the dimensionless cell radius 

p = V / K  

h = Told .  

The effectiveness of convection is measured by the ratio of the total heat flux to 
the flux that would have been carried in the absence of convection: the Nusselt 
number 

For a steady state N is a function of R, p and h only. 

setting 
It is sometimes convenient to express the equations in dimensionless form by 

( T ,  x )  = d(r’, x ’ ) ,  t = ( d 2 / K )  t’,  T = To + ATT’. (23) 
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For a steady state, (8)) (15) and (14) then become, in terms of dimensionless 
(primed) variables, 

where $h = K d $ ’ ,  0 = ( K / d 3 ) Q ’ ,  6’ = T ’ - ( I - Z ) .  (27) 

With this scaling the Prandtl number appears only in the nonlinear term on the 
left-hand side of (25) .  For p 4 1 this term dominates the equation. However, in 
the limit p+co (or, more precisely, when O’/p 4 I )  the Jacobian in (25) can be 
neglected. The solution of the system of equations is then independent of the 
Prandtl number and determined solely by the Rayleigh number R (and the geo- 
metrical factor A). In  particular, from (22), the Nusselt number N = N(R,h)  
only. For large Prandtl numbers, therefore, we expect to find a viscous regime in 
which viscosity affects the flow only through R, and N does not depend on p .  

3. Small amplitude convection 
3.1. Perturbation expansion for  small Reynolds numbers 

Linear theory (Rayleigh 1916; Chandrasekhar 1961; Liang et al. 1969) predicts 
the onset of instability a t  R = R, = 22-7r4, with h = A, = (24/n-)j1 + 1.725, where 
j ,  is the nth non-trivial zero of the Bessel function J,(s). For sufficiently small 
values of R - R, nonlinear solutions can be obtained by the perturbation expan- 
sion technique originated by Malkus & Veronis (1 958) and applied to axisym- 
metric convection by Liang et al. (1969). For Prandtl numbers of order unity 
steady finite amplitude solutions can be expanded in powers of a single, arbitrary 
perturbation parameter E :  

i 
9’ = € $ l + € 2 $ 2 + . . . ,  

Q’ = € Q l + € 2 L l 2 + . . . ,  

8’ = €el +s202 +..., 
R = R, +sRl +e2R2+. . .  , 

(For the remainder of this section only we shall suppress the primes on dimension- 
less variables.) This procedure is valid only if 181 < 1 and \ € /  < p .  Since time is 
measured on the thermal scale, the Pdclet number Pe = Is/ while the Reynolds 
number Re % Isllp, so a necessary condition for the expansion to be valid is that 
both the Reynolds number and the PBclet number should be small. 

Substitution of (28) into (24)-(26) yields a solvability condition that deter- 
mines R, at  each order. For similar boundary conditions at z = 0,1, R, = 0 and 

= [(R - R,,)/R,]~. (29) 
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With free boundaries R, = +(I + k2/n2)3/k2 is the critical Rayleigh number for 
a cell of radius h = jl/k and R2(k ,p )  depends on integrals of the first-order terms 
in (28). These first-order solutions are just the eigenfunctions of the linear 
problem, so that 

(30) 

$1 = rJl(kr) sin nz, 
Ql = [(k2+n2)/r]Jl(kr)sinnz, 

O1 = [k/(k2 + n2)]J0(kr) sin nz.  

Hence the Nusselt number is 

If we restrict our attention to cells with the critical radius h = A, then R, = R,, 
k2 = +n2 and, from (29) and (31), 

The second-order perturbation expansion therefore predicts that N - 1, the 
normalized convective heat transport, is proportional to RIR, - 1. The constant 
of proportionality x depends only on R,. We have computed R, for p 2 I 0-4 and 
find that R,cc 1/p2 for p < 1; as p increases R, becomes independent of the 
Prandt,l number and R, = 12.56 forp 1 (see figure 6 of Liang et al. 1969). Hence 
the parameter x decreases as p 2  for small Prandtl numbers. Figure 1 shows x as 
a function ofp,  together with the corresponding curve calculated for a hexagonal 
cell; the results for a square cell and for a two-dimensional roll (Malkus & Veronis 
1958) are also given. The infinite roll shows no dependence of x on p but the 
convective heat transport tends to zero a t  small Prandtl numbers for all geo- 
metrically three-dimensional configurations. At the other extreme, when p is 
infinite, x = 1.42 for a cylinder, which is only slightly less than the value of 1.45 
for a hexagonal cell (Malkus & Veronis 1958).  It is likely that the range of x for 
any realizable planform lies between the two extreme values, for a roll and for 
a cylinder. The decrease in x at low Prandtl number is mainly associated with 
nonlinear advection of vorticity, represented by the Jacobian in (25). For two- 
dimensional rolls the corresponding term is identically zero when the linear 
solution is substituted into it; hence x does not depend on p .  

A formal radius of convergence for the expansion (28) cannot readily be 
determined, though a necessary condition for this expansion to be valid is that 
both B and s /p  should be small. In  fact, when p 2 1 the perturbation expansion 
turns out to be reasonably accurate for R, < R 5 1*5R,, or I B I  5 5 .  For p < 1, 
(c /p)2 = ( R  - R,)/p2R, 3 0-8(R - R,) and the restriction is more stringent. The 
expansion remains adequate for R, < R 5 I-IR,, or 1c/p1 5 7. We may define 
the Reynolds number 

where U is the maximum vertical velocity, which is determined by the solution. 
Then, for p < I ,  

Re = U / p ,  (33) 

Re = kelp cc (R  - RJi ,  (34) 
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FIGURE 1. Convective heat transport near the critical Rayleigh number. ~ ( p )  determined 
from the second-order perturbation expansion for (a) two-dimensional rolls, (b) square 
cells, (c) hexagonal cells and (d )  cylindrical cells. For p Q 1, x a p2 for squares, hexagons 
and cylinders. 

since c2 cc R;lcc p2, and so Re is independent of the Prandtl number. Advection 
of vorticity becomes significant when Re N 10; using values of x computed from 
(32) we find, for smallp, that Re = 10 when R M l*lR,. So we would expect the 
perturbation expansion (28) to converge only when (RIR,) - 1 5 0.1. 

The accuracy of the expansion can be checked by comparison with fully non- 
linear computations. Liang et al. (1969) reported agreement a t  p = 10, R = 700 
( N  = 1.25). Our numerical experiments agree with the second-order perturbation 
solution forp 2 1, R 5 1.5R, but not for smaller Prandtl numbers. I n  the expan- 
sion the planform of the first-order terms is constrained to be that of the linear 
eigenfunctions; the nonlinear term in the vorticity equation (25) then limits the 
solution and produces a low heat flux. The numerical results indicate that the 
planform changes so as to reduce this nonlinear term as the Rayleigh number is 
increased. This change occurs when the Reynolds number is of order unity. For 
Re > 10, vorticity is advected with the flow: this changes both the form of the 
solution and the amount of heat transported by convection. 

3.2. Modal expansion 

For N 5 2 the PBclet number is small and convection is too weak for thermal 
b0undar.y layers to be formed. The vertical structure of the flow remains com- 
paratively simple. To investigate the transition from small to large Reynolds 
numbers we have therefore developed a modal expansion in the vertical direction 
(cf. the expansionin horizontal modesemployedby Goughet al. 1975). We suppose 
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10-4 104  10-2 3 x 1 0 4  10-1 1 x 
Two modee 

1.01 1.345 1.345 1.327 1.231 1.063 1.008 
1.02 1.352 1.352 1.342 1.282 1.106 1.016 
1.05 1.375 1.375 1.370 1.341 1.192 1.040 
1.10 1-414 1.414 1.411 1.394 1.282 1.081 
1.20 1.500 1.499 1.497 1.486 1.409 1.161 

Four modes 

1.35 1-631 1.630 1.629 1.618 1.547 1.275 
1-50 1.784 1.783 1.783 1.773 1.710 1.406 

TABLE 1. Small amplitude convection : heat flux from modal calculations. 
R/Rc as EL function of N and p for A = A, 

that all quantities are expanded in a Fourier series in z and truncate it after the 
first M terms. Thus we have, instead of (28), 

M 

m= 1 

M 

m = l  

M 

m= 1 

$ = 2 U',(r)sinmm, 

i2 = 2 Rm(r)sinmm, 

0 = 2 O,,(r)sinmnz, 

(35) 

satisfying the appropriate boundary conditions at z = 0 , l  and r = 0, A,. Substitu- 
tion from (35) into the time-independent equations (24)-(26) leads to a 6Mth- 
order system of ordinary differential equations in the independent variable r ,  
with a regular singular point a t  r = 0. This system has been solved numerically 
for M = 2 and 4. In  order to avoid the trivial solution 4 = 0 = 0 it  proved 
advisable to fix the Nusselt number as an integral constraint and then to deter- 
mine the Rayleigh number as an eigenvalue. The derivatives were represented by 
centred second-order differences and the resulting equations solved by a Newton- 
Raphson procedure which iterated on the eigenfunctions and the eigenvalue 
simultaneously, using a program kindly supplied by Dr D. 0. Gough. This method 
is accurate provided the Nusselt number is low enough: two modes suffice for 
N 5 1.3 and four modes for N 5 2. Moreover the computation proceeds much 
more rapidly than a fully two-dimensional numerical experiment. 

Heat fluxes obtained from this modal expansion are shown in table 1 and 
figure 2, for various values of the Prandtl number and a fixed cell radius A,. For 
N < 1.5 the second-order perturbation expansion, the two-mode approximation 
and the fully nonlinear computations all agree, provided p 2 1. However, for 
p < 1 the perturbation expansion deviates from the other procedures except in the 
neighbourhood of the critical Rayleigh number, while the modal and fully non- 
linear computations are in close agreement. When p < 0.1 equation (32) under- 
estimates the value of N -  1 by 10% even for R = l-lR,: these results confirm 
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FIGURE 2. Small amplitude convection: convective heat transport as a function of 
Rayleigh number. Values of N for several different Prandtl numbers, calculated using the 
modal approximation, are taken from table 1. The full curves are for (a) p = 1, ( b )  p = 0.1, 
( 0 )  p = 0.03. The dashed line is the low Prandtl number limit, given by equation (36). 
Also shown are results from numerical experiments, which agree with those from the 
modal calculations. Numerical results: A, p = 1 ; ., p = 0.1 ; 0 ,  p = 0.01. 

that the second-order perturbation expansion is reliable a t  low Prandtl numbers 
only for R/Rc - 1 5 0.1. 

The modal approximation has been used to obtain results for p = 1, 0.1, 0-03, 
0.01, 0.001 and 0-0001. Figure 2 shows that N - 1 increases linearly a t  first but 
that for p 6 0.1 the slope increases when R 2 I-lR, and then settles down to 
a constant value, approximately equal to that for p = 1, when R 2 1.4Rc. This 
transition from one regime to another corresponds to a change in the form of the 
solutions. Inspection of the fields depicted in figure 5 indicates the change in the 
form of Q: the linear eigenfunction of (30) develops into a solution with Q nearly 
constant along the streamlines, and the magnitude of the Jacobian 

a(Q, $,I a(... 4 
dwindles rather rapidly as the Rayleigh number is increased. 

The two-mode solutions allow us to relate changes in the potential vorticity 
to the Reynolds number when p < 1. For a given R 5 1*3R,, the value of Re is 
fairly insensitive to changes in Prandtl number. When R = l - lRc,  Re M 10 and 
increases slowly such that Re z 20 a t  R = 1.3R,. The abrupt change in slope for 
p < 0-01 corresponds to  Re E 30, which is typical for the change in behaviour of 
a passively transported scalar (cf. Weiss 1966). Thereafter, Re increases steadily 



Axisymmetric convection in a cylinder 363 

r 

c: - 1  (iii) 

-2 

FIGURE 3. ( a )  The effect of increasing the Reynolds number on the potential vorticity SZ, 
from the modal calculations with &I = 4. R, and a, ws. T for N = 1.05. The three curves 
arefor (i)p = 100, Re = 0.013, (ii)p = 0.1, Re 9 19, (iii)p = 0.01, Re = 252. ( b )  Depen- 
dence of SZ on @: R/Q,, vs. at z = -$, where pm,, and SZ,,, are the maximum 
values of @ and s1. In the upper graph, the straight line given by the eigenvalue equation 
(49) is compared with results obtained using four modes, for p = 0.01, N = 1.05. The 
lower graph shows values taken from numerical experiments with p = 0.01 and 
(i) R = 2R,, (ii) R == 6R,, (iii) R = 100R,. Apparently R is very nearly proportional to $ 
for R* < R 5 2R,. 

with R. When R + R, and Re < 1, the f i s t  mode is just the eigenfunction of (30) 
and Qz is small. As the Reynolds number increases, grows, to become com- 
parable with a, when R e  * 15, but for Re 2 30, Qz is small again, while R, 
assumes a different form. These changes are displayed in figure 3 (a)  for N = 1.05. 
At low Reynolds numbers, vorticity generated by horizontal temperature 
gradients is dissipated locally by viscosity. When Re - 10, advection of vorticity 
becomes significant and vorticity generated in rising or sinking regions is carried 
round along the horizontal boundaries, where it is destroyed. Hence an anti- 
symmetric structure develops and Q2 is comparable with Q,. At high Reynolds 
numbers, vorticity is advected right round the cell, so that u . VQ z 0 and sym- 
metry prevails again. If u . VQ = 0 then Q is a function of $. In  fact, the results 
suggest that Q is approximately proportional to @ at high Reynolds numbers, 
over a surprisingly wide range of Rayleigh numbers. In  figure 3 ( b )  values of i2 
and @ at z = 4 are plotted against each other. For p = N = 1.05 the devia- 
tion from a linear relationship is only just perceptible in the four-mode solution; 
even when R = 6R, it  is only when @ is a maximum that the curve flattens out. 

The N, R relationships derived from table 1 show that as the Prandtl number 
tends to zero N becomes independent of p and so a limiting curve of N against R 
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is approached in figure 2. In  this inviscid limit the Nusselt number remains unity 
until a second critical Rayleigh number R* > R, is reached. More precisely, for 
R, < R < R* solutions are consistent with the perturbation expansion, which 
predicts dimensionless velocities proportional t o p  and N - 1 cc p2 .  When R > R*, 
N rises linearly with a gradient similar to that predicted by (32) for p 2 1. 
Figure 2 shows a straight line fitted to  the results for p = The heat flux is 
given by, instead of (32), the expression 

with x = 1-3. The value of the second critical Rayleigh number R* is 1.337 as 
estimated from the two-mode calculation and 1-32 from the four-mode calcula- 
tion. This slight difference shows that the higher modes, though small, are still 
present at the critical point. The existence of this critical point followed by a low 
Prandtl number regime in which the Nusselt number does not depend on p is 
sufficiently important to deserve a more detailed investigation. 

N - 1 = x(R - R*)/R,, (36) 

3.3. The low Prandtl number limit 

As p -+ 0 and the Reynolds number U / p  +a, the potential vorticity is con- 
strained to be almost constant along the streamlines. In  this limit we can expand 
variables in powers of p ,  so that 

$ =  I: $nPn, a= I: ampn, o =  I: enpn. (37) 
n = O  n=O n-0 

The leading term in the vorticity expansion (25) is the nonlinear Jacobian: substi- 
tution from (37) gives the condition 

(38) 
so fi, is a function of $, and therefore constant along streamlines of the zero-order 
flow. The form of a,($,) is determined by a balance between the generation and 
diffusion of vorticity across the streamlines. The right-hand side of (25) is of first 
order in p and must be equated to the first-order Jacobians a($,, Q,)/a(r,  x )  etc. 
However, it is possible to avoid explicit introduction of u1 by using the dimension- 
less equation of motion 

(39) 
where q = IuI and e, is a unit vector in the z direction. Integrating (39) round 
;t closed streamline C, enclosing a surface S,  yields the exact equation 

w - 0 ,  f i O ) / V ,  2) = 0, 

p- l[o  A u + V($q2)] + V(P/p)  = RTe,- V A o, 

P P 

Following Batchelor (1956), we write the zero-order contribution to the right- 
hand side of (40) as 

VA(ra,e,).dl = -- (r2fi0)-e,.r- .dl 

= sf w o  c r2u,.d1+2fio# C e,.dl 

f C #c[::r aR,l ax 

= %j r2ll0.dl, 
w - 0  c 
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where e+ and e, are unit vectors in the azimuthal and radial directions. Moreover, 
r r r 

r3 i2 ,d~  - 2 f S ,  dr dz = S, r ~ ,  ds.  
= s, (42) 

Thus, from (40)-(42), 
r r 

dSZ R pc8, e, . di R ae,/ar d s  
=-  J S  (43) $= r2uo. dl 1 S r 3 ~ , ~ s  * 

In  particular, if the temperature is horizontally stratified, or uniform, in 8 then 
SZ, is constant (Batchelor 1956). 

C 

We have also, from (26), the zero-order equation 

and, from (24), the zero-order heat flow equation 

Equations (43)-(45), with the boundary conditions on $, and 8, and the condition 
Q,(O) = 0, define the zero-order solution. This system of equations could be solved 
iteratively by assuming the form of SZ, and solving the inhomogeneous elliptic 
equation (44) for $,, hence finding 0, from (45) and then substituting into (43) to 
obtain an improved estimate of 0,. Since p does not appear explicitly in these 
equations, the solution is independent of the Prandtl number. In  particular, the 
Nusselt number N = N ( R )  and is independent of p .  The smallest value of R for 
which there exists a non-trivial solution to these equations defines the second 
critical Rayleigh number R*; as R -+ R* the left-hand side of (45) tends to zero, 
andN(R*) = 1. 

This result suggests an interpretation of the second critical Rayleigh number 
R*. Forming the scalar product of (39) with u and integrating over the cell allows 
us to express R as the ratio of two power integrals: 

This forms the basis of a variational principle for the determination of R,, the 
lowest Rayleigh number for which the work done by buoyancy forces can equal 
the viscous dissipation (Chandrasekhar 1961). At low Prandtl numbers we might 
minimize the same ratio, subject to the additional constraint that !2 = a($), to 
obtain another critical Rayleigh number Rt such that B, < Rt < R*. 

The approximate value of R* can be obtained by a procedure equivalent to 
taking the limit of the two-mode solution as p -+ 0. We suppose that SZ, can be 
expanded as a power series in $o, 

LI, = a($,+a2$;+a3$;+ ..'), (47) 
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where the coefficients are themselves functions of the maximum value Y of I $,I 
such that arYr-l = O(1). Now ( 4 3 )  can be differentiated to give 

If C is the boundary ($, = 0 )  both aB,/ar and Q, are zero; hence Qb = 0 also and 
so a2 = 0 in (47 ) .  We therefore approximate (47) by setting 

Qo = 4 0  (49 )  

so that ( 4 4 )  reduces to the eigenvalue equation 

This can be solved by separating variables to give an eigenfunction 

$-, = Y(r)sinm 

with an associated eigenvalue a = 11.61. (More generally, a is a decreasing 
function of A.) The velocity and vorticity can be derived from $, and the 
temperature is obtained from the linearized form of ( 4 5 ) :  

V2B, = - r-l ag,/ar. (51 )  

Substitution into (46 )  then yields the critical Rayleigh number R*. This pro- 
cedure has been carried out by solving ( 5 0 )  by finite differences and then express- 
ing $,/r as a sum of Bessel functions of the form Jl(kmr),  and 0, similarly in terms 
of Jo(knr), so that the integrals in ( 4 6 )  reduce to sums. We find that R* = 1.337, 
the value estimated above from the two-mode approximation. 

The results of the four-mode calculation, plotted in figure 3 (b ) ,  provide some 
justification for assuming that R, is proportional to $,. The consistency of this 
assumption can be checked by evaluating R; from (43 )  for different values of $o. 

These values of R; vary by about 5%,  indicating that a,Y2 M 0.01 in (47 ) .  
Equation (49 ) ,  though not exactly true, is a surprisingly accurate approximation 
in the range R* < R c 2R,. It can be shown, moreover, that this is the only 
possibility if R, and $, are expanded in two vertical modes. 

The results discussed so far apply only for h = A, = 1.725. The same method 
can be used to find R* as a function of A. As the cell radius is increased R* 
diminishes, reaching a minimum value of 1.22R, when h = 2.9. This behaviour is 
shown in figure 4. Hence for 1.23 < R/Rc < 1.32 convection is more efficient with 
h > A,, though N is a maximum for h = A, at higher Rayleigh numbers. Of course 
the critical Rayleigh number R, itself depends on A. Indeed, R,(h) > R*(h) for 
h 2 2.6; however, the cylindrical cell is by then unstable to the next mode, with 
an annular roll surrounding the central cell and kh = j 2 .  (The second critical 
Rayleigh number for the nonlinear solution with a radial node is always greater 
than R*.) In  the two-mode solutions for these wide cells very little motion occurs 
near the axis; instead there is a rapidly circulating torus near the outer boundary. 
(This tendency can be seen at R = 1-IR, in figure 4 . )  The constraint that R should 
be constant along the streamlines is met by suppressing motion at  the centre of 
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R/Rc - I 

FIGURE 4. Variation with cell radius of the critical Rayleigh numbers. __ , second 
critical Rayleigh number R*, which reaches a minimum for A = 2.9; - - -, critical 
Rayleigh numbers R, for (a) the fundamental mode and (b )  that with one internal node. 

the cell, so that the solution resembles that for convection in a cylindrical 
annulus. 

The models that have been described in this section show that the perturbation 
expansion, though it is fairly reliable a t  high Prandtl numbers, is valid only in the 
immediate vicinity of the critical Rayleigh number when p < 1. This has been 
demonstrated only for cylindrical cells, though we expect the same result to hold 
for all geometrically three-dimensional configurations. Moreover, for convection 
between rigid boundaries perturbation expansions yield values of N for rolls, 
squares and hexagons that are proportional to p 2  for p < 1 (Schluter, Lortz & 
Busse 1965). Yet Clever & Busse (1974) have computed two-dimensional solu- 
tions which show no such decrease in the Nusselt number when R 2 2Rc. We 
conjecture, therefore, that the perturbation solutions are generally misleading a t  
low Prandtl numbers and that there will exist steady solutions for which the heat 
transport is only weakly dependent on p at high Rayleigh numbers. 

4. Numerical experiments 
Different regimes of convection can be classified by dividing the R, p plane 

into various regions, as shown schematically in figure 12. Linear theory yields the 
critical Rayleigh number; second-order perturbation theory is valid in regions 
I and VI, where N - 1 cc R - R,.; and the two-mode calculation of 3 3 is accurate 
in regions V and VI. In  order to obtain solutions for R 2 2Rc ( N  2 2 )  a full non- 



368 C. A .  Jones, D.  R. Moore and N .  0. Webs 

0.01 0.1 1.0 00 

- 1.018 1.125 1.152 
R\Rc Y 

1-1 
1.25 I 1.086 1.31 1.34 
1.5 1.22 1.31 1-59 1.64 
2.0 1.69 1.74 2.00 2.06 

TABLE 2. Small amplitude convection: Nusselt number as a function of 
R and p ;  h = 1.75 

linear computation is required. We have integrated (S), (15) and (14) numerically, 
using a centred second-order finite-difference scheme; the extension to cylindrical 
geometry of the methods used by Moore & Weiss (1973) and described by Moore, 
Peckover & Weiss (1 973) is discussed in the appendix. The difference scheme has 
been implemented on a uniform mesh and the time-dependent equations inte- 
grated until a steady state was reached. All numerical results quoted are derived 
from experiments with sufficient resolution to determine the Nusselt number to 
an accuracy of 1 yo: this allows us to describe convection with R < 100R, on a 
grid with 48 intervals vertically. 

The numerical experiments can be matched to the results for small amplitude 
convection obtained in the last section. Values of N computed on a mesh with 
48 x 84 intervals ( A  = 1.75) are plotted in figure 2 and listed in table 2.  The results 
for infinite Prandtl number are obtained by reducing the parabolic differential 
equation (14) to an elliptic equation for Q, as described in the appendix. The 
analytical and numerical results are in excellent agreement for p = 0.1, 1-0, co 
and R c 1.5R,; forp < 0.01 computations converge very slowly and it is hard to 
estimate N - 1 with sufficient accuracy at very low Rayleigh numbers. The two- 
mode calculation is necessary to provide a bridge between numerical experiments 
and perturbation expansions at low Prandtl numbers. 

Figure 5 shows some isotherms and streamlines, together with horizontal 
profiles of the potential vorticity Q and a plot of the horizontally averaged 
temperature - 

T(2) = - J" (T - To) r dr. 
r1 0 

Here and in subsequent diagrams we constrain hot fluid to rise a t  the centre of 
the cell, although the Boussinesq equations exhibit no preference for either rising 
or falling fluid on the axis. At R = l-lR,, is scarcely affected by convection. 
When p is infinite the motion closely resembles the linear eigenfunction of (30) 
and Q is a maximum on the axis. For p = 0.1, however, vorticity is advected and 
a new maximum of Q appears at the centre of the eddy. With R = 2R, this differ- 
ence is even more apparent: at p = 0.1, !J rises steeply to a maximum within the 
cylinder while the eddy migrates towards the outer boundary. 

At low Rayleigh numbers convection is comparatively insensitive to variations 
in the normalized radius h and the maximum Nusselt number occurs for 
h NN A, = 1.725. At higher Rayleigh numbers N does vary significantly with A. 
Rather than explore a three-dimensional parameter space we choose the cell 
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0.1 1.0 00 

1 1.725 1.725 1.725 
2 1.70 1.75 1-64 

20 1.52 1.67 1.48 
100 1.30 1.42 1.11 

TABLE 3. Choice of cell radius to maximize N :  A* as a function of R and p 

0.10 1.0 6.8 00 

RIRC Y O.O1 

6 24x42  2 4 x 4 2  2 4 x 4 2  2 4 x 4 2  2 4 x 4 2  
10 2 4 x 4 2  2 4 x 4 2  2 4 x 4 2  2 4 x 4 2  2 4 x 4 2  
15 2 4 x 4 2  2 4 x 4 2  2 4 x 4 2  2 4 x 4 2  2 4 x 4 2  
20 48x72  48x72  4 8 x 8 0  48x74  48x68  
50 48x72  4 8 x 7 2  48x72  48x72  48x58  

100 4 8 x 6 0  48x62  48x70  48x56  48x56  

TABLE 4. Mesh sizes for numerical experiments; equal intervals in z and v,  
number of vertical intervals first 

width A*(R,p) that maximizes the Nusselt number N(R,p ,  A )  (Malkus 1954). 
Table 3 shows the variation of A* with R for p = 0.1, 1.0 and co. In  each case A* 
decreases with increasing R, as for two-dimensional rolls (Moore & Weiss 1973). 
This variation is more marked for axisymmetric convection and it is worth noting 
that the valuesof A*forp = 0-1 lie between those forp = 1.0 and co. However, the 
precise locus of A* is probably not very significant, for the Nusselt number varies 
only slightly: at R = lOOR,, p = co, for example, N changes by only 3% for a 
50 % increase in A. A more important consequence of varying the cell radius is the 
appearance of time-dependent convection. Whenp = 6-8 finite amplitude oscilla- 
tions occur at h = 1-75 for R 2 50R,. These oscillations resemble those described 
by Moore & Weiss (1973)  for two-dimensional rolls; in particular, they disappear 
if A is reduced. For R = lOOR, we have obtained steady solutions with h < 1-17. 

The numerical experiments described below were run with normalized cell 
radii approximately equal to A*. The actual numbers of mesh intervals used are 
given in table 4. Although 48 vertical intervals are needed to obtain an accurate 
estimate of the flux when R = l - lR, ,  24 intervals are sufficient for 2 < R/R, < 10. 
For higher Rayleigh numbers 48 intervals are required and these are barely 
adequate at R = lOOR,. The cylindrical geometry makes it difficult to extend the 
calculations to Nusselt numbers greater than 10. 

Table 5 shows the effect on the heat flux of varying the Rayleigh number and 
the Prandtl number. These are the maximum values of N ,  corresponding to the 
normalized radius A*, obtained on the meshes given in table 4. The values of 
R and p were chosen to allow a comparison with the corresponding Nusselt 
numbers for two-dimensional rolls in table 4 of Moore & Weiss (1973); some of 
those results are also included here. The heat fluxes for rolls and cylinders are 
surprisingly similar, though N is systematically lower for axisymmetric cells. 
Variation of N with p is comparatively slight but, whereas the Nusselt number 

24 F L M  73 
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\P 
RIRC \ 

6 
10 
15 
20 
50 

100 

Two-dimensional 
Axisymrnetric cells rolls 

A 
I > c-h-7 

0.01 0.10 1.0 6.8 co 0.1 W 

3.25 3-27 3.42 3.48 3.50 3.61 3.55 
4.04 4.06 4.17 4-16 4.18 4.39 4.24 
4.76 4-77 4.82 4-15 4.76 5.11 4-83 
5-44 5.44 5.44 5.31 5.34 5.67 5.37 
1.76 7.76 7-70 7.24 7-19 7-92 7.32 

10.03 10.06 9-96 8.89 8.96 10.18 9.25 

TABLE 5. Nusselt number as a function of R and p 

____. 

co 
2';12 1 10-2 10-1 1 10 

P 
FIGURE 6. Nusselt number as a function of Prandtl number for (from bottom to top) 
R/Re = 1.5, 2, 6, 20, 50, 100. Convection becomes more efficient a t  low Prandtl numbers 
for R 2 IORe. 

for rolls always increases for p < 1, axisymmetric cells provide more variety. 
At low Rayleigh numbers N drops by about 6 % asp  decreases from 10 to 0.1 (for 
rolls, N rises by 0.1 % over the corresponding range). This is consistent with the 
small amplitude results obtained above. At R = 15Rc there is, if anything, 
a slight maximum a t  p = 1 while for R 2 20Rc, N increases asp decreases through 
unity, as with two-dimensional rolls. The variation of N with p at different 
Rayleigh numbers is shown in figure 6. For a given value of R, N is apparently 
constant both as p - f o o  and as p+O, as predicted in $$2 and 3.3 above. 

For infinite Prandtl number the Nusselt number is given approximately by 
the power law 

for 5 < R/R, < 100. The computed results are compared with this simple power 
law in figure 7. Owing to truncation errors the heat flux is slightly under- 
estimated at high Rayleigh numbers but the results are not significantly different 
from the almost identical power law N = 2.00(R/Rc)* that holds for two- 

N = 1*96(R/Rc)* (53) 
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1 2 4 8 10 20 40 80 100 200 

RIRO 

FIGURE 7. Heat flux as a function of Rayleigh number. Logarithmic plot of 
N VS. RIR,. m, 2, = 0.01; 0 ,  2, = CO; - , equation (53 )  for R 2 20R,; --'-, 
equation (54) for R 3 20R,. 

dimensional rolls at infinite Prandtl number (Moore & Weiss 1973). When 
p = 6.8 the values of N follow those for p = co for R < 20Rc. For R 3 50Rc, the 
cell radius must be reduced to eliminate finite amplitude oscillations; as a result 
the values of N lie below those for p = 1 or co. 

At low Prandtl numbers ( p  < 0-1) the Nusselt number is once more a function 
of R only. The results for p = 0.01 are plotted in figure 7. At low Rayleigh 
numbers N is distinctly less than for high Prandtl numbers but for R 2 SR, the 
curve rises more steeply so as to give a larger heat transport for R 2 20Rc. It is 
difficult to fit an exact power law to these results, owing partly to truncation 
errors, but over the range 6 < R/Rc < 100 the heat flux is consistent with the 
expression 

N = 1~64(R/Rc)0~40*0~02. (54) 

The exponent apparently falls off slightly with increasing R (though this is partly 
caused by lack of resolution) and it is conceivable that the slope is tending mono- 
tonically to some fixed value. Over this range the exponent in (37) is significantly 
greater than the value of 0.365 found for two-dimensional rolls (Moore & Weiss 
1973) and afortiori greater than the slope of Q at high Prandtl numbers. 

The qualitative behaviour of geometrically three-dimensional convection is 
best displayed by sets of isotherms, streamlines and profiles of the potential 
vorticity Q, which exhibit much more variety than the tabulated Nusselt 
numbers. As the Rayleigh number is increased a large isothermal region develops 
around the eye of the toroidal eddy. The main features to notice in figures 8-11 
are the location of this region, the corresponding value of its temperature and, 
most striking, the variations in the potential vorticity Q. At infinite Prandtl 
number the eddy is fairly symmetrical and Q has its maximum on the axis. As R 
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\p 0.01 0.10 1.0 6.8 03 

R/Rc \ 
6 0-507 0.498 0.440 0.443 0-462 
20 0.480 0-470 0.412 0.389 0.422 
100 0.440 0.433 0.383 0.304 0.389 

TABLE 6. Mean temperature of the convection cell: (T)/AT as a 
function of R and p 

increases, Q drops more steeply and the central plume plays an important role 
in driving the motion. The mean temperature of the layer 

is relatively high, as shown in table 6. When p = 6-8 (corresponding to water) 
the results are fairly similar, though (T) has decreased and Q is less concentrated 
on the axis. 

At low Prandtl numbers the vorticity profiles are quite different. Although 
Q is not quite zero on the axis, its greatest value there (which can scarcely be seen 
when p = 0.01) is dwarfed by the flat maximum corresponding to the centre of 
the eddy, where both T and SZ are uniform. The eddy itself has migrated outwards, 
giving a much broader central plume, though (T) is not much different from its 
value when p is infinite. The results for p = 0.1 and 0.01 differ only in the magni- 
tude of the Reynolds number, which is inversely proportional to p ,  and in small 
details of the flow. 

The cases with p = 1 lie between regions I11 and IV of figure 12 and show 
behaviour intermediate between the two extremes. Q has a rather flat distribu- 
tion with its maximum on the axis and a t  high Rayleigh numbers shows a flat 
depression over the centre of the eddy. The isotherms are noticeably different 
from those a t  either high or low Prandtl numbers and the mean temperature (T) 
is comparatively low. In  all these numerical experiments the potential vorticity, 
which is advected with the fluid according to (15), provides the best kinematic 
description of the flow. The vorticity w ,  which drops to zero on the axis, is much 
less informative. 

The mean temperature profiles are nearly identical a t  R = 6R,, despite differ- 
ences in the actual temperature distribution. Even when R = lOOR, they show 
little variety, apart from the variation in (T). At high Rayleigh numbers the 
lack of symmetry between the central rising column of fluid and the narrow sheet 
descending a t  the perimeter affects the mean temperature. The characteristic 
temperature inversion appears only near the upper surface, except at infinite 
Prandtl number, corresponding to the spreading hot region near x = d. This is 
particularly clear when p = 1. Away from the boundaries d T / d z  is small, though 
the stable stratification is visible a t  high Prandtl numbers. 
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FIGURE 12. Different regimes of convection. The R ,  p plane is divided schematically into 
regions bounded by lines on which the PBclet number, the Reynolds number or the Prandtl 
number is of order unity. 

5. Discussion 
The general behaviour of axisymmetric convection cells is very similar to that 

of two-dimensional rolls, except in the restricted region where R/R,- 1 < 1 for 
p < 1. This behaviour can best be described by reference to figure 12, where the 
R, p plane is divided into six regions, separated by three lines. The horizontal line, 
where the PQclet number Pe = Ud/K N 1, separates weak from strong convection; 
below this line, the uniformly stratified temperature distribution is merely 
perturbed, above it the temperature variation is concentrated into boundary 
layers enclosing a nearly isothermal core. The second line, where the Reynolds 
number Re = Ud/v  N 1, separates the viscous from the advective regime. For 
p < 1 this transition occurs when R z R* = 1-32Rc; for p 2 1 the change takes 
place when R/R, z pg (cf. Moore & Weiss 1973). Finally, high and low Prandtl 
number regimes are separated by the vertical line p = 1. 

For Prandtl numbers greater than unity there are three distinct regimes. At 
low Rayleigh numbers ( 1  < B/Rc 5 1-5), in region I ,  convection is weak and the 
temperature field is only slightly distorted. In  this region the potential vorticity 
SZ scarcely deviates from the linear eigenfunction of (30). Region I1 corresponds 
to a viscous regime with vigorous convection and a local balance between the 
generation of vorticity by the buoyancy torque and its dissipation through 
viscosity. Thermal boundary layers are formed, together with an isothermal zone 
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that occupies most of the cell, while the Nusselt number N z 2-O(R/RC)f and is 
independent of p .  The asymptotic form of the boundary layers has been investi- 
gated by Moore & Proctor (1976). This regime includes all models with infinite 
Prandtl number; for finite p the Reynolds number must be small, so that 
1-5 5 R/R, 5 p8 (Moore & Weiss 1973). 

At higher Rayleigh numbers, in region 111, nonlinear advection of vorticity 
becomes important. In  the isothermal zone u . VQ M 0 and, from (43), C2 is nearly 
constant in a steady state (Batchelor 1956). However, viscous dissipation remains 
effective in the horizontal boundary layers and Q has its maximum on the axis. 
We have not been able to determine the dependence of N on R explicitly for this 
regime. The behaviour of the solution is sensitive to the cell radius. For h = 1.75, 
finite amplitude oscillations appear, with an amplitude that increases with R, as 
shown by the experiments with p = 6-8. However, these oscillations disappear 
when h = 1. The mechanism that produces them is the same as that described by 
Moore & Weiss (1973). 

When p < 1, in region IV, viscosity is too weak to destroy the vorticity of a 
fluid element as it traverses the boundary layers. The vorticity gradually 
increases as fluid circulates round the cell until a balance is reached between 
the rate of work done by the buoyancy force and the overall viscous dissipation 
rate, as expressed in (46). For p < 1 the vortex ring behaves like a flywheel, 
circulating with a speed much greater than the reduced free-fall velocity 

Uo = (gaATd)*. (56) 

For fixed R, the maximum velocity U N U,p-3 and the Reynolds number 
Recc p-l: at p = 0.01, R = lOOR,, for example, U M lOU, and Re M 2.5 x lo4. In  
this low Prandtl number advective regime 

N M A @ )  (R/R,)o.4, (57) 

where A is independent of p for p < 1. We conjecture that the same power law 
may hold also in region 111, with A a slowly decreasing function of p ,  say 

A ( p )  M 2p-0'1 ( p  > 1). (58) 

Three-dimensional geometry introduces a qualitative difference between con- 
vection in rolls and in cylinders. For two-dimensional rolls the vorticity must 
be nearly constant along streamlines in the advective regime. I n  fact u . Vo = 0 
for the linear eigenfunction and there is not too great a difference between the 
forms of solutions in the viscous and advective regimes. In  cylindrical flow vortex 
lines are stretched as they move outwards from the axis and Q, rather than w, 
must be nearly constant on the streamlines. Unfortunately the boundary condi- 
tions on Q and @ are dissimilar: though o = 0 at all boundaries, Q is finite on the 
axis. In  the viscous regime the form of the solution resembles the linear eigen- 
function but in the advective regime the flow adjusts its form so as to satisfy the 
constraint that u . VQ w 0. The profiles of SZ for p = 0.1, R = lOOR, show that it 
follows the streamlines, and is nearly uniform at the centre of the eddy, as 
predicted by Batchelor (1956). 
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In  region V convection is weak and no thermal boundary layers are formed, 
though the Reynolds number remains high (sincep < 1). As R decreases further, 
the Reynolds number drops until Re M 30. Q is no longer advected round the 
streamlines and the Nusselt number moves off the limiting line in figure 2. For 
p < 1 this transition occurs when R M R* and the transition region is accessible 
only to the modal approximation of $3. In  region VI, where, for small p?  
1 < R/R, 5 1.32, vorticity is no longer advected with the flow. The Nusselt 
number is small and decreases with p ?  differing thereby from region I. As can be 
seen from figure 5, the solution for R/R, = 1.1 still shows a maximum of Q within 
the cell. It is only for R/R,- 1 < 0.1 that Q resembles the linear eigenfunction; 
the heat transport is then given by the perturbation solution (32), with N - 1 cc p2, 
but the convective transport is negligible. 

6. Conclusion 
The principal consequences of this study can be summarized quite briefly. 

Convection in axisymmetric cells does not differ significantly from that in two- 
dimensional rolls except in the narrow range where both R/R, - 1 and p are very 
small. Outside this range the heat transport shows only a weak dependence on 
the Prandtl number. We infer that these results would hold also for steady 
1 aminar convection in rectangular or hexagonal cells and that three-dimensional 
geometry alone does not have much effect. 

Two-dimensional rolls are apparently unique in having linear solutions with 
eigenfunctions such that V A (u A o) = 0. Hence the heat flux near the critical 
Rayleigh number is independent of p. I n  three-dimensional cells nonlinear advec- 
tion of vorticity reduces the convective transport at low Prandtl numbers when 
R is close to R, (as shown in figure 1). As the Reynolds number increases, the fluid 
acts as a flywheel, carrying vortex lines around; the plenform is no longer that of 
the linear solutions, V A (u A o) becomes small and N ceases to depend on p. The 
effect of asymmetries between upward- and downward-moving fluid is compara- 
tively slight. 

An attempt to isolate this effect has been made by Gough et al. (1975), who 
studied cellular convection by solving a set of model equations in which the 
horizontal planform is described by a single mode. Referred to Cartesian co- 
ordinates, the vertical component of the velocity w = f(x, y) w(~), wheref(x, y) is 
a prescribed function (corresponding to a separable solution of the linear 
problem) such that V2f = -Icy, with Ic constant. The truncated model equations 
include nonlinear interactions whose magnitude depends on the parameter 

a measure of the up-down asymmetry, where the bars denote horizontal averages. 
For two-dimensional rolls, for example, C = 0, while for a cylindrical cellf = J,(kr) 
and C + 0.176; for rectangular cells C = 0, again, while C + 0.408 for hexagons. 
When C = 0 this model reduces to the mean-field approximation; for stress-free 
boundaries N is then proportional to 22% and independent ofp as R+co. With C of 
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order unity, three asymptotic regimes can be distinguished as R+m: for 
R/R, < p-I, N - I - (pR/RJ2; for R/R, 9 p% 9 (R/R,)-g, N N (pRlnpR)%; and, 
for R/R, < p#,  N N (R/R,)*. In  the last case, which corresponds to the viscous 
regime in region I1 of figure 12, the asymptotic behaviour of the Nusselt number 
agrees with our numerical experiments. In  the advective regime our results differ 
from the solutions to these model equations, which imply that the Nusselt number 
should fall off as p + 0. This discrepancy is easily explained. In  regions IV and V 
of figure 12, where Re B 1, the planform of our nonlinear solutions deviates from 
that of the linear solution, thereby allowing N to remain independent of the 
Prandtl number for p < 1. 

Although we have obtained steady laminar solutions which are stable to  
axisymmetric disturbances, cylindrical convection might prove unstable to non- 
axisymmetric perturbations, corresponding to the oscillatory mode for two- 
dimensional rolls (Busse 1972). To investigate this problem requires a three- 
dimensional calculation, which we have not attempted. Moreover, it  is unrealistic 
to consider a cylindrical cell in total isolation. The oscillations of convection rolls 
set in as a collective instability, at a fixed Reynolds number of order unity (Busse 
1972). They can be described in terms of the behaviour of parallel vortex tubes 
in a neutrally stratified, inviscid fluid (Busse 1972; Clever & Busse 1974). At 
finite amplitudes viscosity, though small, must be significant, for it allows the 
vortex tubes to reconnect. The analogous problem for a tesselated pattern of 
cellular convection is that of an assemblage of closely packed interacting vortex 
rings. Their behaviour might provide an adequate model of turbulent convection. 

The cylindrical solutions described here provide a valid description of convec- 
tion between free boundaries at low and moderate Rayleigh numbers. However, 
steady laminar flow is unlikely to persist for arbitrarily large Reynolds numbers. 
At high Rayleigh numbers and low Prandtl numbers the solutions, both for rolls 
and for axisymmetric cells, have speeds far greater than the reduced free-fall 
velocity 77,. The time taken to attain a speed U' is greater than r - ( U/U,) r,, 
where the free-fall time ro = d/U,. Thereafter, a steady state is approached on the 
viscous time scale rV = d2/v = (U, d lv )  7,. If U 9 U, B u/d both r and rv are much 
greater than 7,. It seems improbable that a particular configuration could survive 
for long enough to reach a steady state in practice. A more plausible hypothesis is 
that the lifetime of a cell is of order r,, and that the velocity U N U,. These limita- 
tions must be a result of three-dimensional behaviour and may be related to 
Busse's oscillatory instability. 

It is worth speculating briefly on the nature of convection between free 
boundaries. At R = R, convection sets in as rolls. For high Prandtl numbers the 
rolls should be stable throughout the viscous regime with R/R, < p% (Straus 
1972). At low Prandtl numbers the rolls develop oscillatory instabilities when the 
Reynolds number Re E 6 (Busse 1972). As the Rayleigh number increases these 
oscillations can grow in amplitude until the rolls break up into three-dimensional 
cells. However, the heat transport should not be drastically affected by this 
process, for rolls and cylinders have similar Nusselt numbers while experiments 
with rigid boundaries show only slight changes in N as oscillations appear (Willis 
& Deardorff 1970; Krishnamurti 1973). 
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At very high Rayleigh numbers we expect that the interactions between 
adjacent three-dimensional cells would limit their lifetime to the turnover time 7, 
and that the velocity would then be comparable with the free-fall velocity U,. If 
fluid elements lose their excess heat while traversing a thermal boundary layer 
of thickness 6 then, from (S), 

UOd/K N (60) 

and so N N (d/6) - (pR)k  (61) 

R, = ( S / C ~ ) ~  R N (R/p3)$ (62) 

The local Rayleigh number for the thermal boundary layer 

increases until the boundary layer itself becomes unstable. For a laminar 
boundary layer R, N R, and so N N I?*. At low Prandtl numbers R, should be 
evaluated using a laminar conductivity and an eddy viscosity 

V, N (63) 

N - ( I p W  (64) 

based on the free-fall velocity through the boundary layer; it  then follows that 

and the heat flux is independent of both Y and d (Spiegel 1971 a, b) .  Finally, a t  
extremely high Rayleigh numbers, shear-flow turbulence might increase the 
effective conductivity such that N N @I?)#, as in ordinary mixing-length theory 
(Spiegel 1971 a, b ) .  

This study has shown that the heat transport owing to steady laminar convec- 
tion does not diminish with decreasing Prandtl number. Hence any bound on the 
Nusselt number must be independent of Prandtl number for finite p .  Further 
progress requires fully three-dimensional time-dependent calculations. These 
might be expected to yield a Nusselt number that depends on the product p R  
as p -+ 0. Such an investigation could provide an understanding of turbulent 
astrophysical convection; it would also consume vastly more computer time than 
the work described here. 
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Appendix. Numerical methods 
No account of numerical (or any other) experiments is complete without a 

description of the methods used sufficient to enable others to  repeat the experi- 
ments and to gauge their accuracy. The computations discussed in $4 used 
a second-order finite-difference scheme on a staggered mesh, properly centred in 
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space and time. All equations were expressed in conservative form, thereby 
avoiding any difficulties on the axis. This formulation is an extension to 
cylindrical co-ordinates of that developed by Roberts & Weiss (1966), Moore et al. 
(1973) and Moore & Weiss (1973) for a Cartesian mesh. 

The system of nonlinear partial differential equations (8), (15) and (14) is 
solved by representing the variables T ,  R and $ on a square grid with spacing 
Ar = Ax = h. Let rj  = jAr, zk  = kAz and tn = nAt, where j = 0, 1, ..., N, and 
k = 0, 1, . . . , N,, and put TTk = T ( r j ,  Zk, tn)  etc. To represent the equations in 
conservative form we regard Tzk as the average value of T over the box 
{rj-l < r < rj+l, zk-1 < z < xk+l, 0 c rj5 < l}; similarly, the velocity u is the 
average flux across a surface and w the average circulation round a surface, while 
$ is averaged trivially along a line element in the 9 direction. The temperature 
equation is then averaged over the box, so that divergences are converted into 
fluxes, while the vorticity equation (12) is averaged over an area, with the curls 
transformed into circulations. The elliptic equation (14) can also be expressed in 
terms of circulations and is then solved implicitly by Fourier analysis in the 
z direction. This procedure provides a unique difference formulation of the equa- 
tions, which is more accurate than that obtained by simply expanding the 
derivatives, as has been shown by Weir (1976) for the analogous problem in 
a sphere. 

In  the temperature equation (8) the advective terms are treated by the leapfrog 
scheme which conserves T exactly, and diffusion is represented by a Dufort- 
Frankel scheme which couples the independent meshes to each other. Then (8) 
becomes, f o r j  > 1, 

where the velocities are expressed in terms of $ from (10). This holds for j 2 1; 
f o r j  = 0 we must integrate (8) over the elementary cylinder 

(0 < r < AT, zk-1 < 2 < zk+l, 0 < $ < 2n}, 
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which differs topologically from the surrounding annuli. Integrating over the 
disk (0 < r < Ar} we find that was = 2$, Jh2 and SO 

n+t 
n+t - $?$il) - T;$tl $?$$, 

At 
Tgkl = T t k  + (h2 + 3K&) [ i T 1 , k  ( @ l , k + l  

The singularity at  r = 0 in (8), which is a property of the co-ordinate system and 
not of the physics, does not affect the finite-difference formulation. 

Since (66) and (67) relate values of T a t  times tn and tn+l to values at adjacent 
points at time tn+* it is not necessary to calculate and store T at all points for all 
time levels. We therefore use a staggered mesh on which values of Ti, at points 
withj + k even are stored a t  times tn, tn+l,  . . . , while those withj  + k odd are stored 
at times in+*, tn+*, . . . . This procedure halves the requirements for computer time 
and storage, with no appreciable loss of accuracy. 

To find the potential vorticity Q we should integrate the vorticity equation 
(12 )  over the area {rj-l -= r < rj+l, zk-l < z < z ~ + ~ } .  The result of this procedure 
is identical to that obtained by integrating the scalar equation (15) over avolume, 
whence we find, for j 2 1, that 

The values of Q on the axis (which are not actually needed for the computation) 
are obtained from the boundary condition (18): 

QQ,k = '2, k (69) 

to second order. Once again, it is only necessary to calculate Q on a staggered 
mesh, at the same points as T.  

The treatment of the elliptic equation (14) is somewhat more complicated, 
since @ and Q are defined on a staggered mesh and we must therefore express the 
left-hand side in terms of @j,  and $j*l, kfl .  This can formally be done by inte- 
grating w over the lozenge with vertices at (rj*l,zk) and (r j ,zkl t l )  and then 
expressing the circulatory velocities around the perimeter of this lozenge as 
averages over the inclined plane surfaces, perpendicular to the r ,  z plane, passing 
through (rjWl, z ~ + ~ )  and (rj ,  zk) etc. Since u = V A ($r-le+) these averaged velo- 
cities can be expressed, through Stokes' theorem, in terms of $j-l,k+l, $j,k etc. 
Once again, the result is identical to that obtained by integrating (14) over the 

25  F L Y  73 
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volume formed by rotating the lozenge about the axis r = 0. Using an obvious 
notation for difference operators, defined in Moore et al. (1973), we have 

@i,k = - 2jh 4Qj, k' (70) j 
(j  - 4)-1 (j + &)-I 

(j  + &)-I 
- 4j/(jZ- 4) ( (j - &)-l 

To solve this equation we first eliminate alternate columns, so as to leave only 
values of @j,k with j even (Moore et al. 1973), and then expand @ in a truncated 
Fourier series in the z direction, so that 

~NZ-1 17TZ 
$(xi,z) = Yisin-. 

I = 1  d 

The resulting equations have the form 

where c = cos (2nlh/d) and 

They are solved by tridiagonal elimination and $ is synthesized from (71). Values 
of @ withj odd are then given by 

Finally, since this procedure yields values of $ at the same points as !2 while 
(68) requires $ on the alternate mesh, it is necessary to interpolate for $. This is 
done using a fourth-order expression based on (14), so that 

(75) 

Solution of these equations proceeds very rapidly with fast Fourier transform 
techniques. 

In$nite Prandtl number 

When p is infinite, (15) reduces to the linear elliptic equation 

Happily, this has exactly the same form as (14). The vorticity can therefore be 
found by the same technique of Fourier analysis in the z direction. Moreover, this 
process yields values of !2 at points adjacent to those where T is defined; these 
values of R in turn yield $ at the same points, where it is needed for (66). No 
interpolation of $ or Q is required and accuracy is correspondingly improved, as 
in Cartesian geometry (Moore et al. 1973; McKenzie, Roberts & Weiss 1974). 
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Accuracy 

No detailed error analysis has been carried out but experience confirms that the 
accuracy of the cylindrical code is similar to that of the Cartesian code discussed 
in detail by Moore et al. (1973). Near the axis, where errors of order (Ar/r)2 might 
appear significant, there were no signs of any irregular behaviour. The results 
were reliable (giving an error of less than 1 yo in N )  provided that there were a t  
least three intervals across the thermal boundary layers. The form of the 
cylindrical solutions allows more structure than two-dimensional rolls and the 
boundary layers are compressed near the axis. However, this affects only a small 
area and has little effect on global averages like the Nusselt number. Similarly, 
the descending plume a t  the outer boundary can become very thin, and must be 
adequately resolved. 

We have implemented the schemes described above on meshes with N, = 12, 
24 or 48 and N, d 84. This has allowed us to follow convection with Nusselt 
numbers N 5 8 with adequate accuracy and to obtain plausible results for 
N M 10. (The asymmetry between rising and sinking fluid prohibits the effective 
doubling of the mesh that was possible for two-dimensional rolls.) With Fourier 
analysis routines for N, = 96 it would be possible to obtain accurate solutions 
for R M 500R,. 

With carefully constructed conservative difference schemes it is possible to 
compute highly nonlinear solutions with sufficient accuracy. For example, we 
attained an accuracy of 1 yo at N M 5 (R = 20RJ with N, = 24. Liang et al. (1969), 
who expanded the derivatives before forming the difference equations, did not 
proceed beyond N M 2 with N, = 29. The availability of fast Fourier transforms 
makes the use of derived variables preferable to the method devised by Williams 
(1967) for investigating convection in an annulus. Other methods are reviewed 
by Orszag & Israeli (1974). Although spectral and pseudo-spectral techniques 
allow considerably improved accuracy for a given amount of storage, finite- 
difference methods are comparable in terms of speed. They can also readily be 
extended to include, for example, the effects of a magnetic field. 
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